If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-16x+15=3
We move all terms to the left:
3x^2-16x+15-(3)=0
We add all the numbers together, and all the variables
3x^2-16x+12=0
a = 3; b = -16; c = +12;
Δ = b2-4ac
Δ = -162-4·3·12
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{7}}{2*3}=\frac{16-4\sqrt{7}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{7}}{2*3}=\frac{16+4\sqrt{7}}{6} $
| 0.02x^2-5.15x=-367.43 | | Y-9=-13+3y | | 5(2−4x)+4x=10 | | 3m=(-8)=-23 | | 2x+500=3x+3 | | 7v-5v=18 | | 7x+5-5x-8=13 | | 4c200=144 | | 3c+19=19 | | 2q−3=1 | | 3x-3=43 | | 8=x+7x | | 6a+3=-7a+133 | | 5(x-6)^2+8=43 | | Y=-4x+50=14 | | 16=8x-6x | | 12x4+2x=39 | | 7+3x=7x-5 | | 1/5+4m/20=4/5 | | 2x+-12=-8 | | 11.88=4q | | 5−2z=3 | | 8−2y=2 | | 0.9*x=106 | | m/3-3=13 | | -4d-4=5d-8 | | 2x^2+6x-1927=0 | | 3y/4-5=22 | | x-630=0,1871*x | | 36x²+12x+1=36x²+33x-20 | | 8+16x-3x=65 | | 3x^2+18x-63=0 |